

RED DE POSICIONAMIENTO Y NAVEGACIÓN EN INTERIORES. Red de Excelencia del Ministerio de Economía y Competitividad del Gobierno de España

Pedestrian Dead-Reckoning (PDR) Tutorial

Dr. Antonio Ramón Jiménez Ruiz **Centre for Automation and Robotics (CSIC-UPM)** Ctra. Campo Real km. 0,2 Arganda del Rey (Madrid) e-mail: antonio.jimenez@csic.es

Outline

- Some theory:
 - 1. What is PDR?
 - 2. Inertial Navigation (INS)
 - 3. Implementation problems
 - 4. PDR algoritmic solutions
- Practice (Matlab):
 - 1. Introduction
 - 2. PDR with pre-recorded logfiles
 - 3. PDR with your own phone
- Evaluation (Kahoot)

What is PDR?

- A method to:
 - estimate the user's trajectory (Position & Heading)
 - by integrating inertial measurements
- No need of external beacons: GPS, Cell-positioning, LPS (WiFi, BLE, UWB, US, Light,...)
- Assumes known initial conditions:
 - position and orientation
- Uses Inertial data:
 - Acceleration (m/s^2)
 - Angular rate (rad/s)

What is PDR?

- «Acceleration & Angular rate» signals to integrate
 - Example: 60 meters walk
 - go (18 steps) + 180º turn (1 step) + return walk (18 steps)

What is PDR?

• Acceleration, Angular rate, trajectory integration ... it sounds like «Inertial Navigation» or INS...

• Can I use inertial navigation syst. (INS) for PDR?

Outline

- Some theory:
 - 1. What is PDR?
 - 2. Inertial Navigation (INS)
 - 3. Implementation problems
 - 4. PDR algoritmic solutions
- Practice (Matlab):
 - 1. Introduction
 - 2. PDR with pre-recorded logfiles
 - 3. PDR with your own phone
- Evaluation (Kahoot)

• INS

- Uses an IMU (Inertial Measurement Unit)
 - 3 accelerometers (measuring "specific force" [m/s²] caused by motion and also gravity)
 - 3 giroscopes (measure "angular rate" [rad/s])
- Applies navigation equations integrating Inertial data
 - Starting from an initial position and pose, estimates the final trajectory of a moving object

- Global Reference frame (n-frame o navigation) :
 Inertial (Earth Centered), ECEF, Local (Leveled)
- Attitude:
 - 3D orientation of body IMU reference system (b-frame) respect to the global reference system (n-frame)
 - Euler: Roll, Pitch, Yaw,
 - Direction Cosine Matrix (DCM): R_bⁿ,

- 2 types of INS:
 - 1) INS with stabilized platform
 - Stabilized with motors to keep gyro signals to zero.
 - Readings of axis: (Roll,Pitch,Yaw) directly gives the Attitude
 - Accelerometer signals are in n-frame => so INS is only substract "gravity", and double integration to get P and V

- 2) Strap-down INS:
 - No stabilized platform. 3 Acc y 3Gyr fixed respect the body.
 - Integrate velocity (Gyro) to keep track of Attitude (R_bⁿ)
 - Transform especific force (f^b) measureed by acelerometers in bframe to n-frame (fⁿ) using Attitude.
 - Eliminate gravity (g) to that acceleration (fⁿ), obtaing: f'ⁿ
 - Integrate f'n to obtain velocity (Vn), and again to get position (Pn)

Strap-down INS: Implementation in Matlab

% INS

% Acc: IMU Acelerometer signal (3 axis) $[m/s^2]$

- % Gyr: IMU Angular Rate signal (3 axis) [rad/s]
- % fs: Frecuencia muestreo [Hz]

% Actualizar matriz de orientación con valores de los "Gyros" SkewGyros=[0 -Gyr(i,3) Gyr(i,2);...

Gyr(i,3) 0 -Gyr(i,1);...

-Gyr(i,2) Gyr(i,1) 0]*pi/180; % rad/s

Rot nb(:,:,i)=Rot nb(:,:,i-1)*(2*eye(3)+SkewGyros/fs)*inv(2*eye(3)-SkewGyros/fs); % Pade(1,1)

• INS concept is easy and we have the code

- So, PDR problem is solved:
 - Let's take an IMU and
 - implement PDR as INS !!!

Any problem with that?
– Yes, several....

Outline

- Some theory:
 - 1. What is PDR?
 - 2. Inertial Navigation (INS)
 - 3. Implementation problems
 - 4. PDR algoritmic solutions
- Practice (Matlab):
 - 1. PDR code and tools
 - 2. PDR with pre-recorded logfiles
 - 3. PDR with your own phone
- Evaluation (Kahoot)

3. Implementation problems

- The size and weight of IMU:
 - Pure INS solutions require bulky sensors
 - Not good to be carried by a person in PDR

3. Implementation problems

- The noise in the MEMS IMU:
 - Additive noise in Acc & Gyr readings
 - Bias (systematic, unstability, turn on)
 - Ortogonality, scaling, thermal
- Noise generates:

Acc

- Integration errors
- Errors in Attitude

Acceleration

Range (g)

 $\pm 5/18$

Xsens Mti:

_			
	Angular Rate $Pange (°/s)$	ARW	BRW $(^{\circ}/hr)$
Gyr I	± 300	(/ \vee m) 3	50

VRW

122

 $(\mu g/\sqrt{\text{Hz}})$

BRW

(mg)

0.05

0.0025

in homogeneous magnetic environment

3. Implementation problems

• Attitude error => gravity to leak as acceleration

Outline

- Some theory:
 - 1. What is PDR?
 - 2. Inertial Navigation (INS)
 - 3. Implementation problems
 - 4. PDR algoritmic solutions
- Practice (Matlab):
 - 1. Introduction
 - 2. PDR with pre-recorded logfiles
 - 3. PDR with your own phone
- Evaluation (Kahoot)

- Ways to improve INS for Pedestrians:
 - 1) Split the INS problem into pieces: Step by step

- 2) Apply human motion models:
 - Step frequency: 1Hz (useful for signal filtering and stance length estimation),
 - Foot on floor (if IMU at foot => Velocity=0 at stance; ZUPT)

- Walking Phases:
 - 2 states (stance and swing) and 7 different phases
 - The stance (60%) and swing (40%) phases
 - For a foot-mounted IMU: Magnitude of Acc & Gyr are stable during Midstance (central stance phase)

• Foot-attached IMU signals at stance:

- There are 2 main types of PDR algorithms:
 - "INS-ZUPT": Integrates accelerations (INS) and correct velocities with zero velocity updates (ZUPT) at stance. IMU must be on foot.
 - "SL+θ": Accumulates Stride
 Length (SL) estimations, along the
 Orientation angle (θ) at foot
 stance. General purpose (IMU
 anywhere)

 General block diagram for an IMU-based Pedestrian Navigation System:

• Step detection

Step Detection Methods

• Step detection using Accelerometers:

Stride Length (m)

- **Step Length** (SL) Weinberg Algorith.
 - Assumes SL is prop. to BOUNCE (vertical movement of hip)
 - Bounce estimated from largest Acc.

Steps

HIP

• Attitude estimation (AHRS):

• Orientation from gyroscopes :

$$\begin{split} \boldsymbol{\omega}^s &= \left(\boldsymbol{\omega}^s_x, \boldsymbol{\omega}^s_y, \boldsymbol{\omega}^s_z \right) \quad \text{Gyro signals} \\ C(t) &= C(0) \cdot exp\left(\int_0^t \Omega(\tau) d\tau \right) \end{split}$$

C (rotation matrix) computed integrating the skew simetric matrix from an initial orientation

• Orientation from accelerometers / magnetometer (absolute reference): $m^{s} = (m_{x}^{s}, m_{y}^{s}, m_{z}^{s})$ magnetometer signals

 $a^s = (a^s_x, a^s_y, a^s_z)$ acceleration signals

$$\phi = \tan\left(\frac{a_y^s}{a_z^s}\right)^{-1} \qquad \text{Pitch}$$

$$\theta = \tan\left(\frac{-a_x^s}{\sqrt{(a_y^s)^2 + (a_z^s)^2}}\right)^{-1} \qquad \text{Roll}$$

$$\left(-m^h\right)^{-1}$$

$$\psi = \tan\left(\frac{-m_x^h}{m_y^h}\right)^{-1} \pm D \qquad \text{Yaw}$$

- Some Integrated AHRS algorithms (optimal weighting):
 - Madwick AHRS algorithm (Gradient descent optimization gyro vs. accel/magne).
 - Mahony AHRS algorithm (complementary filter)

 $q_{fused}(k) = \gamma \cdot q_g(k) + (1 - \gamma) \cdot q_{a/m}(k)$

Position, Velocity

SI

East

SL₃

and Attitude

INS-based

North

Ρn

- PDR Algorithm: "SL+0": MU Acceleration SL-based or SL-based or
 - The SL can be computed, e.g.:

 $SL_{Weiberg_k} = K \cdot \{\max_{j=[i_{(k)}\pm w]}^{\tilde{a}_j} - \min_{j=[i_{(k)}\pm w]}^{\tilde{a}_j}\}^{1/4}$

- The θ angle at foot stance, computed using gyros (& opt. magnetometers).
- Accumulates Stride Length (SL) estimations along the Orientation (θ)

 $\begin{cases} P_k(\text{north}) = P_{k-1}(\text{north}) + \text{SL}_k \cdot \cos(\theta_{\text{stance}_k}) \\ P_k(\text{east}) = P_{k-1}(\text{east}) + \text{SL}_k \cdot \sin(\theta_{\text{stance}_k}), \end{cases}$

- "K" number of steps
- Method valid con "normal" walking (only forward walk).

• PDR Algorithm: "INS-ZUPT" :

samples

- Integrate accelerations to obtain velocity (INS).

• **PDR Algorithm: "INS-ZUPT"** (cont):

– Accumulates position increments: $\Delta P_i = \check{v}_i^G \cdot \Delta T$

 $\begin{cases} P_i(\text{north}) = P_{i-1}(\text{north}) + \Delta P_i(\text{north}) \\ P_i(\text{east}) = P_{i-1}(\text{east}) + \Delta P_i(\text{east}). \end{cases}$

- Method valid for "any" type of walk (forward/lateral/backwards walk, ^{North} running, crawling, etc).
- ...but IMU must be on foot

Outline

- Some theory:
 - 1. What is PDR?
 - 2. Inertial Navigation (INS)
 - 3. Implementation problems
 - 4. PDR algoritmic solutions
- Practice (Matlab):
 - 1. Introduction
 - 2. PDR with pre-recorded logfiles
 - 3. PDR with your own phone
- Evaluation (Kahoot)

Practice: Introduction

Dataset #1: IDEAL Noise-less

- Simulated IMU:
 - acceleration (Acc), turn rates (Gyr) and magnetic field (Mag)
- Ground-truth included (4 loops):
 - position (Pos), velocity (Vel) and orientation (Euler and DCM)
- Units are in:
 - meters, seconds and radians.
- Sampling frequency: 100 Hz
- IMU rotated on foot as in picture.
- All trajectories starts at point (0,0,0)
- Gravity is 9.8 m/s2

1.2) Closed trajectory in a square loop of 30 x 30 m. Download dataset

Practice: Introduction

- Dataset #2: REAL
 - 2 IMUs:
 - Foot-mounted Xsens IMU and Internal IMU at Smartphone
 - Using "GetSensorData" App:
 - Records logfile with:
 - WiFi RSS, Inertial data (Accelerometer & Gyroscope), Magnetic, GPS, the orientation of the phone, Pressure, Temperature, Humidity, Sound intensity and Light intensity

-	≵ ս⊡ս № 12:52	
C GetSens	orData	:
Show Sensor Features	Hide Real-time	Start Saving a L <u>og Fil</u> e
Internal Sens	ors:	
ACCE: LSM330DL0	C Acceleration Sense	or
Acc(X): 0.362 Acc(Y): 5.08965 Acc(Z): 8.2768 Freq:	85 m/s*2 5 m/s*2 1 m/s*2 50 Hz	
GYRO: LSM330DL	C Gyroscope Sensor	
Gyr(X): -0.0345 Gyr(Y): 0.2458 Gyr(Z): -0.0122 Freq:	1 rad/s 7 rad/s 2 rad/s 217 Hz	
MAGN: AK8975C I	Magnetic field Sense	or
Mag(X): 12.312 Mag(Y): -22.500 Mag(Z): -20.187 Freq:	250 uT 000 uT 750 uT 99 Hz	
PRES: LPS331AP I	Pressure sensor	
Presssure: 951.3 Freq:	32 mbar 25 Hz	
LIGH: CM36651 Li	ght Sensor	
Light Intensity: Freq:	494.0 Lux 50 Hz	
PROX: CM36651 F	Proximity Sensor	
Proximity: 6.0 Freq:	Units 0 Hz	
	ark First Positio	on

GYR0;4.410;-0.03726;-0.16860;-0.17318;3 AHRS;4.410;28.7201;0.4508;177.5888;0.00141;0.24804;0.96855;-106 LIGH;4.410;4767.0;0 ACCE;4.411;-0.67995;4.85544;8.30309;3 MAGN;4.411;1.26000;-39.48000;-17.76000;3 PRES;4.419;948.5206;0 GYR0;4.420;-0.04948;-0.13347;-0.16463;3 AHRS;4.420;28.7140;0.5296;177.4918;0.00095;0.24800;0.96855;122 LIGH;4.420;4748.0;0 ACCE;4.421;-0.69911;4.9033;8.35098;3 MAGN;4.421;1.26000;-39.36000;-17.76000;3 GYR0;4.430;-0.06017;-0.09407;-0.13347;3 AHRS;4.432;8.6960;0.6096;177.4190;0.00043;0.24786;0.96858;-3 ACCE;4.432;-0.70868;4.88417;8.34140;3 MAGN;4.422;1.38000;-39.42000;-17.64000;3

Practice: Introduction

Matlab algorithms and logfiles:

- Three main files, for 3 practices
- PDR algorithms:
 - INS for position & Attitude
 - Step detection
 - Step length estimation
 - Two PDR types:
 - INS-ZUPT, –
 - SL+theta

– Tools:

- Visualization and
- Log_file interpretation
- Log_files:
 - #1 ideal (4 loops),
 - #2 rectangular (3 loops)
 - You will create your own log_files

Download from http://lopsi.weebly.com/

	Name Name	Size	Date Modified	Туре 🔻
1	main_P3.n	2 KB	31/01/17 12:32	MATLAB Scrip
1	main_P2.m	3 KB	31/01/17 12:58	MATLAB Scrip
1	🛀 main_P1.m	2 KB	31/01/17 15:34	MATLAB Scrip
\rightarrow	ZUPT_StrideLength_Heading_Position.m	9 KB	30/01/17 16:37	MATLAB Fun
\rightarrow	Weiberg_StrideLength_Heading_Position.m	5 KB	30/01/17 16:30	MATLAB Fun
1	visualizar_INS_results.m	3 KB	26/01/17 12:27	MATLAB Fun
1	StepDetection_Gyro.m	3 KB	2/11/09 13:36	MATLAB Fun
1	StepDetection_Acel_smartphone.m	3 KB	30/01/17 16:00	MATLAB Fun
1	StepDetection_Acel.m	4 KB	27/01/17 17:40	MATLAB Fun
1	🚵 ReadLogFile.m	25 KB	30/01/17 15:51	MATLAB Fun
1	NS.m	6 KB	31/01/17 15:34	MATLAB Fun
	log_files		31/01/17 15:50	File Folder
	Iogfile_3loops_forward.txt	8 MB	25/01/17 13:26	Documento
	logfile_3loops_1lateralbackwards.txt	8 MB	25/01/17 13:31	Documento
	ideal_footIMU_rectangulo.txt	4 MB	24/01/17 12:12	Documento
	Η logfile_3loops_1lateralbackwards.mat	3 MB	31/01/17 13:08	MAT File
	<u> i</u> deal_footIMU_rectangulo_GT.mat	892 KB	24/01/17 12:12	MAT File
	Η ideal_footIMU_rectangulo.mat	474 KB	31/01/17 15:34	MAT File

Outline

- Some theory:
 - 1. What is PDR?
 - 2. Inertial Navigation (INS)
 - 3. Implementation problems
 - 4. PDR algoritmic solutions
- Practice (Matlab):
 - 1. Introduction
 - 2. PDR with pre-recorded logfiles
 - 3. PDR with your own phone
- Evaluation (Kahoot)

• PRACTICE 1: Effects of noise on INS

PosyG

PosxG

• PRACTICE 1: Effects of noise on INS

```
% 1) Load ideal noise-free data (ideal footIMU rectangulo.txt) and inspect
% Read log file
disp('1) Load ideal noise-free data (ideal footIMU rectangulo.txt) and inspect');
disp('Reading Logfile...');
[~,~,Acc,Gyr]=ReadLogFile('.\log files\ideal footIMU rectangulo.txt','Xsens'); % load IMU simulated data: /
load('.\log files\ideal footIMU rectangulo GT.mat'); % load Ground truth data: 'Pos G','Vel G','Att G','Rot
disp('Logfile Read...');
disp('-> TO DO: Inspect IMU signals (press enter to continue)');
pause;
% 2) Apply INS algorithm (INS.m) to ideal IMU signals and check correct integration
disp(sprintf('\n2) Apply INS algorithm (INS.m) to ideal IMU signals and check correct integration');
% Apply INS to obtain Pos,Vel v Att:
disp('Applying INS...');
[Pos G rec, Vel G rec, Att G rec]=INS(Acc, Gyr);
disp('INS ended. Showing results...');
visualizar INS results (Pos G rec, Vel G rec, Att G rec, Pos G, Vel G, Att G, Rot GS, Stance, StepDectSample, 10);
disp('-> TO DO: Check correct integration (press enter to continue)');
pause;
```

PRACTICE 1: Effects of noise on INS

```
§.....
                                               % 3) Add noise (rand or bias) to IMU signals and inspect drift
disp(sprintf('\n3) Add noise (rand or bias) to IMU signals and inspect drift'));
Amplitud=0.0; % m/s^2
Bias=0.0: % m/s^2
                                                                                      Position 3D X-Y-Z en G (m)
samples=length(Acc);
Acc(:,1:3)=Acc(:,1:3)+Amplitud*randn(samples,3);
Acc(:,3)=Acc(:,3)+Bias*ones(samples,1);
Amplitud=0.0: % rad/s
Bias=0.001;
                  % rad/s
samples=length(Gyr);
Gyr(:,1:3)=Gyr(:,1:3)+Amplitud*randn(samples,3);
Gyr(:,3)=Gyr(:,3)+Bias*ones(samples,1);
% Apply INS to obtain Pos, Vel y Att:
disp('Applying INS with noise...');
[Pos G rec, Vel G rec, Att G rec]=INS(Acc, Gyr);
disp('INS with noise ended. Showing results...');
visualizar INS results (Pos G rec, Vel G rec, Att G rec, Pos G, Vel G, Att G, Rot GS, Stance, StepDectSample, 20);
disp('-> TO DO: Check correct integration (press enter to continue)');
```

- PRACTICE 1: Effects of noise on INS
 - Conclusions:
 - INS works perfectly on ideal or noiseless.
 IMU data
 - INS does not work if sensor data has:
 - Bias, Noise,
 - Low sampling frequency
 - Quantization, saturated
 - Axis misalignements

Position 3D:X-Y-Z en G (m

- PRACTICE 2: PDR with foot-mounted real
 Xsens-MEMS IMU
 - One square 3 times (76 steps: 22+23+31, forward walk, but last 3 sides lateral/backwards walk)

PRACTICE 2: PDR with foot-mounted real Xsens-MEMS IMU

% -----% PDR Tutorial: PRACTICE 2 (main_P2.m)
% Lopsi Group. CAR-CSIC/UPM
% 2017
%-----clc; clear all; close all; disp('PRACTICE 2: PDR with FOOT-MOUNTED real XSENS-MEMS IMU');
%
% PRACTICE 2: PDR with FOOT-MOUNTED real XSENS-MEMS IMU
% 1) Load real data with foot-mounted IMU (logfile_3loops_llateralbackwards.txt)
% -One square 3 times (76: 22+23+31 steps, forward walk, but last 3 sides lateral/backwards walk)
% 2) Apply INS PDR algorithm and analyse drifts in position
% 3) Apply INS-ZUPT and analyse processing:
% -Detection of steps and stance
% -Correction of Velocities to zero (ZUPT)
% -Walking direction

PRACTICE 2: PDR with foot-mounted real Xsens-MEMS IMU

```
%......% 1) Load real data with foot-mounted IMU (logfile_3loops_1lateralbackwards.txt)
% -One square 3 times (76: 22+23+31 steps, forward walk, but last 3 sides lateral/backwards walk)
% Read log_file
disp('1) Load real data with foot-mounted test and inspect');
disp('Reading Logfile...');
% load IMU read data: Acc,Gyr de Xsens (3 loops)
[~,~,Acc,Gyr]=ReadLogFile('.\log_files\logfile_3loops_1lateralbackwards.txt','Xsens',1); % 76 steps (2 loops
%[~,~,Acc,Gyr]=ReadLogFile('.\log_files\logfile_3loops_forward.txt','Xsens',1); % 66 steps (3 loops)
disp('Logfile Read...');
disp('-> TO DO: Inspect IMU signals and bias (press enter to continue)');
pause;
```

PRACTICE 2: PDR with footmounted real Xsens-MEMS IMU

```
\
% 2) Apply INS PDR algorithm and analyse drifts in position (remove bias)
disp(sprintf('\n2) Apply INS PDR algorithm and analyse drifts in position (remove bias)'));
% Remove bias Gvro
samples=5000; % asumo 50 segundos parado (y fs=100 Hz)
bias Gyr=[mean(Gyr(1:samples,1)), mean(Gyr(1:samples,2)), mean(Gyr(1:samples,3))];
Gyr unbiased=Gyr; %[nx4]
Gyr unbiased(:,1:3)=[Gyr(:,1)-bias Gyr(1), Gyr(:,2)-bias Gyr(2), Gyr(:,3)-bias Gyr(3)];
% Apply INS to obtain Pos,Vel y Att:
disp('Applying INS...');
[Pos G rec, Vel G rec, Att G rec]=INS(Acc, Gyr);
%[Pos G rec, Vel G rec, Att G rec]=INS(Acc, Gyr unbiased);
disp('INS ended. Showing results...');
idx fig=10;
visualizar INS results (Pos G rec, Vel G rec, Att G rec, idx fig);
disp('-> TO DO: Check uncorrect INS integration/ remove bias (press enter to continue)');
pause;
```

PRACTICE 2: PDR with foot-mounted real

disp('INS-ZUPT ended. Showing results...'); disp('-> TO DO: Check correct integration INS-ZUPT');

Check: Step detection thresholds

- PRACTICE 2: PDR with foot-mounted
 real Xsen-MEMS IMU
 - Conclusions:
 - Bias&noise in Gyros cause attitude errors growing linear with time => big problems
 - INS does not work with MEMS IMUs, even with bias removed
 - INS-ZUPT makes PDR, with bias removed, to work pretty well (for foot-mounted IMU)

PRACTICE 3: PDR with hand-held real smartphone IMU (Samsung S4)

PDR Tutorial: PRACTICE 3 (mai P3.m) Lopsi Group. CAR-CSIC/UPM 2017 clc; clear all; close all; disp('PRACTICE 3: PDR with hand-held real smartphone IMU (Samsung S4) '); PRACTICE 3: PDR with hand-held real smartphone IMU (Samsung S4) 1) Load real data with smart-phone IMU (logfile 3loops 1lateralbackwards.txt) -One square 3x (76 steps, forward walk, but last 3 sides lateral/backwards walk) 2) Apply SL+theta PDR algorithm and analyse results: -Check bias remove effect -Step detection & Stride Length estimation -Position estimation while walking lateral/backwards % 1) Load real data with smart-phone IMU (logfile 3loops 1lateralbackwards.txt) -One square 3 times (76 steps, forward walk, but last 3 sides lateral/backwards walk) % Read log file disp('1) Load real data with smart-phone IMU and inspect'); disp('Reading Logfile...'); % load IMU read data: Acc,Gyr de Xsens (3 loops) %[~,~,Acc,Gyr]=ReadLogFile('.\log files\logfile 3loops 1lateralbackwards.txt','Xsens',1); %ON FOOT %(2 loops + 1]

[Acc,Gyr,~,~]=ReadLogFile('.\log_files\logfile_3loops_1lateralbackwards.txt','smartphone',1); %ON HAND %(2 loops +
disp('Logfile Read...');

PRACTICE 3: PDR with hand-held real smartphone IMU (Samsung S4)

```
% 2) Apply SL+theta PDR algorithm and analyse results
       -Check bias remove effect
8
        -Step detection & Stride Length estimation
€.
        -Position estimation while walking lateral/backwards
€.
disp(sprintf('\n2) Apply SL+theta PDR algorithm and analyse rsults'));
% Remove bias Gyro
samples=5000; % asumo 50 segundos parado (v fs=100 Hz)
bias Gyr=[mean(Gyr(1:samples,1)), mean(Gyr(1:samples,2)), mean(Gyr(1:samples,3))];
Gyr unbiased=Gyr; %[nx4]
Gyr unbiased(:,1:3)=[Gyr(:,1)-bias Gyr(1), Gyr(:,2)-bias Gyr(2), Gyr(:,3)-bias Gyr(3)];
% Apply INS to obtain Pos,Vel y Att:
disp('Apply SL+theta PDR...');
%-----Step detection-----
idx fig=20;
%[Num steps,Step events,StancePhase,idx fig]=StepDetection Acel(Acc,1,idx fig);
[Num steps, Step events, StancePhase, idx fig]=StepDetection Acel smartphone(Acc, 1, idx fig);
%----SL-theta-----
%[StrideLengths, Thetas, Positions,idx fig]=Weiberg StrideLength Heading Position(Acc,Gyr,Step events,StancePhase,:
```

[StrideLengths, Thetas, Positions, idx_fig]=Weiberg_StrideLength_Heading_Position(Acc, Gyr, Step_events, Stancernase, ... [StrideLengths, Thetas, Positions, idx_fig]=Weiberg_StrideLength_Heading_Position(Acc, Gyr_unbiased, Step_events, Stancernase, ...

PRACTICE 3: PDR with hand-held real smartphone IMU (Samsung S4)

- PRACTICE 3: PDR with hand-held real smartphone IMU (Samsung S4)
 - Conclusions:
 - Step detection is more challenging
 - SL+theta PDR is good for forward walking, but can be cheated if direction of motion and direction of IMU/phone is not the same
 - Still to be done: create a robust PDR method for free phone position vs person's motion

Outline

- Some theory:
 - 1. What is PDR?
 - 2. Inertial Navigation (INS)
 - 3. Implementation problems
 - 4. PDR algoritmic solutions
- Practice (Matlab):
 - 1. Introduction
 - 2. PDR with pre-recorded logfiles
 - 3. PDR with your own phone
- Evaluation (Kahoot)

PDR with your own phone

- PRACTICE 4: SL+θ PDR with your
 phone
 - 1. Get your phone (Android)
 - Install the App «GetSensorData». Download App from <u>http://lopsi.weebly.com/downloa</u> ds.html

-	⊸ *	
🜍 GetSens	orData	
Show Sensor Features	Hide Real-time Data	Start Saving a Log File
Internal Sens	sors:	
ACCE: LSM330DL	C Acceleration Sense	or
Acc(X): 0.362 Acc(Y): 5.0896 Acc(Z): 8.2768 Freq:	85 m/s [*] 2 5 m/s [*] 2 1 m/s [*] 2 50 Hz	
GYRO: LSM330DL	C Gyroscope Sensor	
Gyr(X): -0.0345 Gyr(Y): 0.2458 Gyr(Z): -0.0122 Freq:	1 rad/s 7 rad/s 2 rad/s 217 Hz	
MAGN: AK8975C	Magnetic field Sense	or
Mag(X): 12.312 Mag(Y): -22.500 Mag(Z): -20.182 Freq:	250 uT 000 uT 750 uT 99 Hz	
PRES: LPS331AP	Pressure sensor	
Presssure: 951. Freq:	32 mbar 25 Hz	
LIGH: CM36651 Li	ight Sensor	
Light Intensity: Freq:	494.0 Lux 50 Hz	
PROX: CM36651 F	Proximity Sensor	
Proximity: 6.0 Freq:	Units 0 Hz	
Linki No Linedali	lark First Positio	n

PDR with your own phone

- PRACTICE 4: SL+θ PDR with your phone
 - Design a trajectory of your wish (control number of steps, turns, ending position,..)
 - Remember to keep phone in front of you
 - Start recording with the App (Start button)
 - Transfer recorded logfile to your PC
 - Apply the SL+theta PDR algorithm (main_P3.m)
 - Analize results, repeat test if necessary.

Outline

- Some theory:
 - 1. What is PDR?
 - 2. Inertial Navigation (INS)
 - 3. Implementation problems
 - 4. PDR algoritmic solutions
- Practice (Matlab):
 - 1. Introduction
 - 2. PDR with pre-recorded logfiles
 - 3. PDR with your own phone

Evaluation (Kahoot)

Testing PDR with Kahoot

• Play PDR evaluation game:

Some PDR references

- Oliver J. Woodman, "An introduction to inertial navigation", UCAM-CL-TR-696, 2007.
- R. Harle. "A survey of indoor inertial positioning systems for pedestrians". IEEE Communications Surveys & Tutorials, 15(3), pp. 1281-1293, 2013.
- Skog et al, "Zero-velocity detection in pedestrian navigation systems - an algorithm evaluation," Biomedical Engineering, vol. 57, no. 11, pp. 2657– 2666, 2010.
- A.R. Jiménez et al., «A Comparison of Pedestrian Dead-Reckoning Algorithms using a Low-Cost MEMS IMU», WISP, pp. 37-42, 2009.

Competición PDR (REPNIN)

- Demuestra tu aprendizaje en PDR y llévate un premio 300€
- Patrocinado por la red:
 - Red de Posicionamiento y Navegación en Interiores (REPNIN). TEC2015-71426-REDT
- Información disponible en la web:
 - <u>http://introarte.net/pruebas/geintra/</u>
 - Procedimiento:
 - Indicar deseo de participar (ahora o por email: <u>antonio.jimenez@csic.es</u>) => Te envío los log_files.

- 2. Procesa los datos con tus algoritmos mejorados de PDR
- 3. Guarda **tus estimaciones de posición XY cada 0.5 segundos** en un fichero texto => y envíalo por correo.
- 4. Fecha tope de envío resultados: 1 de Junio